High-Resolution Downscaled Simulations of Warm-Season Extreme Precipitation Events in the Colorado Front Range under Past and Future Climates*
نویسندگان
چکیده
A high-resolution case-based approach for dynamically downscaling climate model data is presented. Extreme precipitation events are selected from regional climate model (RCM) simulations of past and future time periods. Each event is further downscaled using theWeatherResearch and Forecasting (WRF)Model to storm scale (1.3-km grid spacing). The high-resolution downscaled simulations are used to investigate changes in extreme precipitation projections from a past to a future climate period, as well as how projected precipitation intensity and distribution differ between the RCM scale (50-km grid spacing) and the local scale (1.3-km grid spacing). Three independent RCM projections are utilized as initial and boundary conditions to the downscaled simulations, and the results reveal considerable spread in projected changes not only among the RCMs but also in the downscaled high-resolution simulations. However, even when the RCMprojections show an overall (i.e., spatially averaged) decrease in the intensity of extreme events, localized maxima in the high-resolution simulations of extreme events can remain as strong or even increase. An ingredients-based analysis of prestorm instability, moisture, and forcing for ascent illustrates that while instability and moisture tend to increase in the future simulations at both regional and local scales, local forcing, synoptic dynamics, and terrain-relative winds are quite variable. Nuanced differences in larger-scale andmesoscale dynamics are a key determinant in each event’s resultant precipitation. Very high-resolution dynamical downscaling enables a more detailed representation of extreme precipitation events and their relationship to their surrounding environments with fewer parameterization-based uncertainties and provides a framework for diagnosing climate model errors.
منابع مشابه
Changes in hail and flood risk in high-resolution simulations over Colorado's mountains
The effect of a warming climate on hailstorm frequency and intensity is largely unknown. Global climate models have too coarse resolution to simulate hailstorms explicitly; thus it is unclear if a warmer climate will change hailstorm frequency and intensity, and if so, whether such events will become more likely through intensified thunderstorms or less likely owing to overall warmer conditions...
متن کاملClimate Change Impact on Precipitation Extreme Events in Uncertainty Situation; Passing from Global Scale to Regional Scale
Global warming and then climate change are important topics studied by researchers throughout the world in the recent decades. In these studies, climatic parameters changes are investigated. Considering large-scaled output of AOGCMs and low precision in computational cells, uncertainty analysis is one of the principles in doing hydrological studies. For this reason, it is tried that investigati...
متن کاملAnalyses of Observed and Anticipated Changes in Extreme Climate Events in the Northwest Himalaya
In this study, past (1970-2005) as well as future long term (2011-2099) trends in various extreme events of temperature and precipitation have been investigated over selected hydro-meteorological stations in the Sutlej river basin. The ensembles of two Coupled Model Intercomparison Project (CMIP3) models: third generation Canadian Coupled Global Climate Model and Hadley Centre Coupled Model hav...
متن کاملTrends of Extreme Temperature Over the Lake Urmia Basin, Iran, During 1987-2014
The variability of temperature extremes has been the focus of attention during the past several decades and had a great influence on the hydrologic cycle. A long-term, high-quality daily maximum (TX) and minimum temperature (TN) of seven stations was used to determine the spatial and temporal characteristics of extreme temperature events in Lake Urmia Basin in Iran during 1987 to 2014. The RCli...
متن کاملPrecipitation and its extremes in changed climates
While the specific humidity of the atmosphere is expected to increase as the climate warms, roughly consistent with constant relative humidity in a global mean, precipitation increases do not keep pace with specific humidity increases. To investigate systematically how precipitation changes with climate, we conducted a series of simulations with an idealized general circulation model in which w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013